3.9.13 \(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\) [813]

Optimal. Leaf size=126 \[ \frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \left (a^2+9 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {2 b \left (a^2-3 b^2\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d} \]

[Out]

2*b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*
(a^2+9*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d-2/3*b*(a^2
-3*b^2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a^2*(a+b*sec(d*x+c))*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3926, 4132, 3856, 2720, 4131, 2719} \begin {gather*} \frac {2 a \left (a^2+9 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b \left (a^2-3 b^2\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(2*b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(a^2 + 9*b^2)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*b*(
a^2 - 3*b^2)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]) + (2*a^2*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])*Sin[c + d
*x])/(3*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {4 a^2 b+\frac {1}{2} a \left (a^2+9 b^2\right ) \sec (c+d x)-\frac {1}{2} b \left (a^2-3 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {4 a^2 b-\frac {1}{2} b \left (a^2-3 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (a \left (a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=-\frac {2 b \left (a^2-3 b^2\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\frac {1}{3} \left (a \left (a^2+9 b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a \left (a^2+9 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {2 b \left (a^2-3 b^2\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}+\left (b \left (3 a^2-b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 b \left (3 a^2-b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \left (a^2+9 b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}-\frac {2 b \left (a^2-3 b^2\right ) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sqrt {\cos (c+d x)} (a+b \sec (c+d x)) \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.41, size = 87, normalized size = 0.69 \begin {gather*} \frac {2 \left (\left (9 a^2 b-3 b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\left (a^3+9 a b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {\left (3 b^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(2*((9*a^2*b - 3*b^3)*EllipticE[(c + d*x)/2, 2] + (a^3 + 9*a*b^2)*EllipticF[(c + d*x)/2, 2] + ((3*b^3 + a^3*Co
s[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(3*d)

________________________________________________________________________________________

Maple [A]
time = 0.20, size = 303, normalized size = 2.40

method result size
default \(-\frac {2 \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{3}-6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 b \,a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(303\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-2/3*(4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^3-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^3-6*cos(1/2*d*
x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^3+a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2))+9*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*
x+1/2*c),2^(1/2))*a^2*b+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+
1/2*c),2^(1/2))*b^3)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.71, size = 214, normalized size = 1.70 \begin {gather*} \frac {\sqrt {2} {\left (-i \, a^{3} - 9 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, a^{3} + 9 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-3 i \, a^{2} b + i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (3 i \, a^{2} b - i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (a^{3} \cos \left (d x + c\right ) + 3 \, b^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-I*a^3 - 9*I*a*b^2)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqr
t(2)*(I*a^3 + 9*I*a*b^2)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-
3*I*a^2*b + I*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
))) - 3*sqrt(2)*(3*I*a^2*b - I*b^3)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) - I*sin(d*x + c))) + 2*(a^3*cos(d*x + c) + 3*b^3)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**3,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5007 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.24, size = 124, normalized size = 0.98 \begin {gather*} \frac {2\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {6\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,b^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^3,x)

[Out]

(2*a^3*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (6*a^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (6*a*b^2*ellipticF(c/2 +
 (d*x)/2, 2))/d + (2*a^3*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) + (2*b^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3
/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________